Dr. Aglawe is a mining engineer with experience in rock mechanics (hard and soft rock) and in application of advanced numerical modeling for mining and civil projects. He has been involved in the development of models for tunnels, caverns and dams in hydroelectric projects.
Mr. Ukey provides administrative support to our office and is involved in software sales. He is the first contact for software sales.
This video is a recording of a one hour webinar reviewing the latest features in Version 5.2 of 3DEC. Presented by Dr. Jim Hazzard, 3DEC Product Manager and Lead Developer.
Cable elements in 3DEC may be assigned a tensile yield force limit and an axial rupture strain in order to simulate cable rupture. 3DEC can also simulate the shearing resistance along the cable length between the grout and either the cable or the host material.
The transport and placement of proppant within fractures is modeled in 3DEC by representing the proppant and fracturing fluid as a mixture.
As well as flow through joints, 3DEC 5.2 is capable of simulating fluid flow through the blocks or the matrix (i.e., between the joints). It is assumed that the blocks represent a saturated, permeable solid, such as soil or fractured rock mass.
Continuum numerical modeling is inherently limited when the rock behavior involves mechanisms such as spalling and bulking. The Bonded Block Model (BBM) approach simulates the initiation of cracks that can coalesce and/or propagate leading to extension and shear fracturing, as well as the rock (e.g., intact, jointed, or veined) strength dependency on confinement.
This FLAC 8.1 tutorial demonstrates how to establish the stresses in the dry embankment prior to the formation of the upstream reservoir.
This FLAC 8.1 tutorial demonstrates how to conduct a steady-state seepage analysis to calculate the pore water pressures in the embankment due to the reservoir.
This FLAC 8.1 tutorial demonstrates how to update the soil densities and the effective stresses in the embankment.
The Python programming language is embedded inside FLAC3D 6 and extended to allow FLAC3D models to be manipulated from Python programs. This webinar recording provides a brief introduction to Python scripting and includes many examples of using Python with FLAC3D.
This tutorial steps through the actions necessary to quickly create and solve a FLAC3D model. The focus of this tutorial is to provide you with a basic familiarity with the user interface and recommended work flow.
This video demonstrates using a library set of Building Blocks as a starting point for creating a new model. In this example, cylindrical blocks are snapped together to represent a tunnel and intersected with other blocks representing a nearby wall.
This video demonstrates filling the empty space between key model elements and out to the far field boundary using Building Blocks in FLAC3D 6.
This video is a recording of a one hour webinar reviewing the latest features in Version 6 of FLAC3D (currently available as a pre-release). Presented by Dr. David Russell, FLAC3D Product Manager and Lead Developer.
Building Blocks works seamlessly with the FLAC3D 6.0 extruder tool and new Model Pane. Building Blocks includes a library of model primates and users can also add and load their own building block sets.
A tutorial showing how to create an unstructured mesh in FLAC3D 7.0 using the extruder pane.
A tutorial showing how to create a structured mesh in FLAC3D 7.0 using the extruder pane.
In this example, a pile of earth is modeled overlying undulating ground. This tutorial demonstrates how a FLAC3D model mesh can be easily created using DXF geometries and the ZONE DENSIFY command. How to differentiate parts of the model into separate GROUPs using DXF geometries and the GEOMETRY-SPACE range logic is also demonstrated.
This tutorial demonstrates how to generate a 3D volume mesh from surface geometry imported from DXF or STL files. Both hexahedral-dominant and tetrahedral meshes can be generated automatically using the "zone generate from-geometry ..." command in FLAC3D 7. The results of various keywords are shown.
This tutorial will show how to use the Plot Item Cutting Tool in FLAC3D 7. Creating cut plans is useful for seeing inside 3D model plots. FLAC3D cutting planes include a single-surface plane, a double-surface wedge, and a three-surface octant.
This tutorial will show how to create and manipulate zone plot items for showing model attributes and results.
This tutorial will show how to create and manipulate plot range elements in FLAC3D. Each plot-item in a plot may have one or more range elements that shows the portion which lies within the defined range, while removing from view the portion of the plot-item that lies outside it. Plot-item ranges may also be copied and applied to other plot-items.
This tutorial will show how to paint zone data onto an imported geometric surface in FLAC3D.
Using UDEC 6 and the shear-reduction method to calculate the factor-of-safety, this tutorial will show you how to analyze the stability of a simple slope containing: (1) no discrete jointing (continuum), (2) fully-continuous jointing (discrete blocks), and (3) noncontinuous, en echelon jointing.
In this tutorial we will briefly cover the MINEDW user interface, its components, and the MINEDW Menu with the different options and tools it provides to build numerical models.
In this tutorial we will explore all the visualization components that MINEDW has to offer, and all the options available to the user to visualize the model's components and properties.
In this tutorial we will take a look at the different boundary conditions available to the user, and we will go over some examples of different scenarios in which they would be used.
Introduction to Python scripting by reviewing key concepts and through demonstrations. Part 1 focuses on installing Python, variables and types, conditions and loops, and functions.
Introduction to Python scripting by reviewing key concepts and through demonstrations. Part 2 focuses on classes and objects plus lists and dictionaries.
Introduction to Python scripting by reviewing key concepts and through demonstrations. Part 3 focuses on modules and packages, with a focus on NumPy and Matplotlib.
This website uses cookies to ensure you get the best experience on our website.
This policy applies to the site www.itasca.in (hereinafter the "Site").
A cookie is a small text file in alphanumeric format deposited on the hard disk of the user by the server of the Site visited or by a third party server (advertising network, web analytics service, etc.). When you log on to our Site, we may install various cookies on your device. The cookies we issue are:
In accordance with the regulations, cookies are kept for 13 months.
By browsing our site, you can click on the "social networks" buttons to consult our LinkedIn profile and our YouTube page. By clicking on the icon corresponding to the social network, the latter is likely to identify you. If you are connected to the social network during your navigation on our Site, the sharing buttons allow you to link the contents consulted to your user account. Google, through Google Analytics, places cookies and tracks the site's audience. We can not control the process used by third-party applications to collect information about your browsing on our Site. We invite you to consult their policy of protection of personal data to know their purpose of use and the navigation information they can collect.
When you visit our Site for the first time, a cookies banner will appear indicating the purposes of the cookies. Please note that further navigation on the Site is equivalent to giving your consent to the use of cookies by ITASCA INDIA. You can choose at any time to adapt the management of cookies according to your preferences, disable them or express a different choice via the means described below. If you refuse the use of cookies, you may no longer have access to a number of features necessary to navigate certain areas of our Site.
For the management of cookies and your choices, each browser offers a different configuration.
For Chrome:
For Internet Explorer 8:
For Internet Explorer 10 and 11:
For FireFox:
For Safari:
For Opera:
According to the GDPR, you have the right to access, rectify, oppose, delete and limit information from cookies and other tracers. You also have the right to withdraw your consent. For this, please contact [email protected].