Mining

Itasca offers advanced, first-hand knowledge of mining challenges around the globe and a collective pool of expertise covering a wide range of mine operations, from hard to soft rock mining using both open pit and underground techniques. The company understands the unique geomechanics, hydrologic, and microseismic problems associated with surface and underground mines and the logistical constraints that are encountered in solving them, including:

  • Slope stability
  • Subsidence/mining-induced ground deformations
  • Mine dewatering
  • Ground control
  • Excavation stability
  • Pit and underground blasting efficiency
  • Caveability
  • Recovery and dilution
  • Fragmentation
  • Backfill design
  • Tunneling design
  • Tailings dams design and stability
  • Solution mining and caverns
  • Microseismic design, processing and interpretation
  • Water-quality impacts
  • Heap leach performance optimization
  • Water supply
  • Water-resource impacts
  • Fate and transport analysis of chemicals in soil and groundwater
  • Support of permits and due diligence auditing
  • Hydrogeologic characterization
  • Mine feasibility evaluation
  • Pit lake chemistry
  • Mining methods selection, excavation geometries and sequences
  • Design, installation and monitoring of instrumentation systems

While Itasca utilizes a wide variety of engineering analysis tools, including analytical solutions and empirical charts where appropriate, expert use of 2D and 3D numerical models is usually of critical value to clients. Mine-scale models represent the rock mass from the ground surface to depth below the orebody and would include the lithology and geologic structure, utilizing the existing geotechnical model as input. The model would apply in-situ stresses as measured and simulate the sequential extraction of the orebody in many mining steps. At each step, displacements, strains, and the stress state in the surrounding rock is computed and the yielding or failure state of the rock mass determined. Thus, as a function of extraction sequence (and extraction ratio), the stability of any slopes or pillars and associated deformations can be estimated. To examine the stability of critical infrastructure (crusher station, ventilation raise, haulage way), a number smaller-scale numerical models may be developed.

Click Thumbnail below for SOQ

Latest News
  • Web licenses are now available! They are ideal for organizations with many users at different locations and/or for cloud computing....
    Read More
  • Itasca Symposium 2020 Proceedings Download the 2020 Itasca Symposium proceedings and presentations for free....
    Read More
  • New ICG General Manager Itasca Consulting Group, Inc. is pleased to announce that Dr. Tryana Garza-Cruz is now our...
    Read More

Upcoming Events
15 Jul
Concreep 11+ International Conference - CANCELED
Since 1956, the CONCREEP conference series has remained the key meeting for physicists, mechanicians, and engineers to present and deba... Read More
20 Jul
URTeC 2020
URTeC 2020 in Austin looks to push the boundaries and continue as the premier event focused on the latest science and technology applie... Read More
4 Aug
Deep Foundations Institute S3: Slopes, Slides and Stabilization
Technical Committees of Deep Foundations Institute (DFI) are combining their industry expertise to organize this 2.5-day conference on ... Read More