Learning

Itasca Educational Partnership

ITASCA Academics

Software Tutorials

Generating Videos via Plots

This tutorial illustrates how to generate movies from FLAC3D plots. It is also applicable for 3DEC, PFC, and UDEC.

Rockmass Integration

This example describes how to import and use structural data generated by Rockmass Technologies mapping instrumentation.

Command Conversion Tool

Learn how to automatically convert old FLAC3D and 3DEC data files and FISH functions into the most current software version.

Technical Papers

Influence of the particle shape on the impact force of lahar on an obstacle

Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of physical vulnerability. The existing tools to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts. A discrete numerical model is developed for evaluating debris flow (DF) impact pressures at the local scale of one structure.

Caving in the Fabian Orebody —from Mining Stope to Cave Crater in Malmberget

The Fabian orebody is a non-daylighting iron orebody in the LKAB Malmberget Mine in northern Sweden. During 2010, a prognosis of the cave development in the Fabian area was developed, based on compilation and analysis of all available material. In March 2012, a new cave crater formed on the ground surface above the Fabian orebody, similar to what was predicted. The prognosis is compared with observations of the caving and the differences and implications quantified. A program for continued monitoring of mining-induced deformation in Malmberget is also described and a criterion for allowable mining-induced surface deformations is proposed.

Flowback Test Analyses at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) Site

Injection testing conducted in 2017 and 2019 at the Frontier Observatory for Research in Geothermal Energy (FORGE) site in Utah evaluated flowback as an alternative to prolonged shut-in periods to infer closure stress, formation compressibility, and formation permeability. Flowback analyses yielded lower inferred closure stresses than traditional shut-in methods and indicated high formation compressibility, suggesting an extensive fractured system. Numerical simulations showed rebound pressure is not necessarily the lower bound of minimum principal stress. Stiffness changes can be identified as depletion transitions from hydraulic to natural fractures. The advantage if flowback is reduced time to closure.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Summer Intern Spotlight ITASCA Minneapolis had another group of excellent summer interns this year across our consulting, software,...
    Read More
  • Seamless Integration of Site Data for Improved Mining Analysis Now Available for IMAT: Seamless Integration of Site Data for Improved Mining Analysis...
    Read More