Learning

Itasca Educational Partnership

ITASCA Academics

Software Tutorials

Loops, Splitting, and Operators

When constructing or running simulations, you may want to query or modify values associated with all, or some of, the objects in your model (such as zones, nodes, blocks, balls, contacts, rockbolts, etc.). This may be to measure results like stress or displacement, to assign a calculated extra variable for plotting, or to adjust a property value. There are several ways to identify and navigate across all these objects using loops, splitting, and operators — with each one becoming easier and faster to execute. See how you can apply all of these approaches in a tutorial where a zone property is randomly assigned for strength variability throughout the model. You will also see how much easier and faster these approaches have become. Applying model property distributions via the PROPERTY command is also reviewed.

Homogeneous Embankment Dam Analysis (Part 1 of 3)

This FLAC 8.1 tutorial demonstrates how to establish the stresses in the dry embankment prior to the formation of the upstream reservoir.

Homogeneous Embankment Dam Analysis (Part 2 of 3)

This FLAC 8.1 tutorial demonstrates how to conduct a steady-state seepage analysis to calculate the pore water pressures in the embankment due to the reservoir.

Technical Papers

Input to Orepass Design — A Numerical Modeling Study

Orepass design guidelines required for potentially continued mining at depth. Rock strength and stress state were validated through comparison with observed fallouts in orepasses and shafts and the optimal orientation and location of orepasses for future mining were determined.

Neutral mine drainage water-quality impacts from a form taconite mine

Surface waters at the site of a former Minnesota taconite mine were reported to have solute concentrations elevated with respect to water-quality standards.

Influence of the particle shape on the impact force of lahar on an obstacle

Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of physical vulnerability. The existing tools to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts. A discrete numerical model is developed for evaluating debris flow (DF) impact pressures at the local scale of one structure.

Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Summer Intern Spotlight ITASCA Minneapolis had another group of excellent summer interns this year across our consulting, software,...
    Read More
  • Seamless Integration of Site Data for Improved Mining Analysis Now Available for IMAT: Seamless Integration of Site Data for Improved Mining Analysis...
    Read More