Geomechanical Modeling

Advanced geomechanical modeling can be used to understand long-term reservoir behavior. Validated models help to optimize fracturing and increase reservoir productivity and recovery. Geomechanical models can also be used to investigate longer term effects, such as compaction and subsidence.

Itasca has been on the forefront of creating new simulation approaches by developing new tools and by extending capabilities within our established software. One of the new tools , XSite, is a powerful, fully coupled hydro-mechanical, three-dimensional hydraulic fracturing numerical simulation program based on the Synthetic Rock Mass (SRM) and Lattice methods. XSite is capable of modeling multiple wellbores with multiple stages and clusters, including open-hole completions and perforation tunnels. XSite resolves general hydraulic fracture interaction, including propagation in naturally fractured reservoirs with deterministically or stochastically generated discrete fracture networks (DFNs).

Latest News
  • International Slope Stability 2022 Itasca is proud to be a Diamond sponsor of Slope Stability 2022 (October 17-21 |...
    Read More
  • Software Benchmark Tests To help with your hardware configuration decisions, Itasca has created an online benchmark speed test...
    Read More
  • Meet Our Summer Interns Itasca is pleased to welcome three graduate student summer interns to Minneapolis. They will be...
    Read More

Upcoming Events
13 Mar
3DEC In-Person Introductory course
Live in-person introductory training course in Minneapolis, Minnesota. This course provides an overview of the capabilities and feature... Read More
27 Mar
FLAC3D In-Person Introductory Course
Live in-person introductory training course. This 3-day course provides general feature training addressing basic concepts and recommen... Read More
30 Mar
Griddle In-Person Introductory Course
Live in-person introductory training course. This course provides an overview of the capabilities and features of Rhino3D CAD software ... Read More