Synthetic Rock Mass

Obtaining accurate rock mass strengths requires an understanding of the intact rock and joint properties of each geotechnical unit and the in-situ stress state. To estimate rock mass strengths, Itasca uses the full gamut of engineering approaches, including analytical, empirical, and numerical modeling approaches.

Itasca has also pioneered innovative techniques such as synthetic rock mass (SRM) for primary fragmentation prediction and REBOP for secondary fragmentation prediction. SRM is uniquely capable of explicitly accounting for the impacts of existing fractures (joints or veins), as well as new fracture growth, on fragmentation. In this technique, discrete fracture networks (DFNs) are developed to describe the in-situ fracture network geometry based on available frequency, orientation, and trace length data. The properties of the fractures are established from laboratory testing and/or empirical relations for stiffness and strength (i.e., based on logged and/or mapped roughness, alteration and waviness). Simulated DFNs are then embedded within three-dimensional bonded particle/block models representing simulated intact rock specimens. These samples are strained to simulate the primary fragmentation process as a function of expected underground stresses. Such virtual tests can be done at scales much larger than actual laboratory tests—ranging from meters to hundreds of meters in scale. Virtual lab results are presented in the form of fragment size and volume distribution plots and three-dimensional block models of expected primary fragmentation.

Latest News
  • ITASCA Releases MassFlow version 9.0 ...
    Read More
  • Introducing IMAT (ITASCA Mining Analysis Toolbox): Transforming Mining Analysis Solutions ...
    Read More
  • 3DEC 9 Officially Released ...
    Read More

Upcoming Events
22 Apr
FLAC2D In-Person Introductory Course
Live in-person introductory training course. This 3-day course provides a general overview of FLAC2D and covers many basic concepts and... Read More
29 Apr
PFC In-Person Introductory Course
Live in-person introductory training course. This four-day course provides guidance in the use of the Itasca codes PFC2D and PFC3D to s... Read More
29 May
Getting Started with FLAC2D/FLAC3D
Objectives of the training: •Understand the FLAC2D/ FLAC3D numerical approach and the types ofproblems it can solve•Know how to manipul... Read More