Technical Papers

On the Density Variability of Poissonian Discrete Fracture Networks, with application to power-law fracture size distributions

Etienne Lavoine1,2, Philippe Davy1, Caroline Darcel2, & Romain Le Goc2

1Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
2Itasca Consultants S.A.S., Ecully, France

Lavoine, E., Davy, P., Darcel, C., & Le Goc, R. (2019). On the Density Variability of Poissonian Discrete Fracture Networks, with application to power-law fracture size distributions. Adv. Geosci., 49, 77-83. doi:10.5194/adgeo-49-77-2019

Abstract

This paper presents analytical solutions to estimate at any scale the fracture density variability associated to stochastic Discrete Fracture Networks. These analytical solutions are based upon the assumption that each fracture in the network is an independent event. Analytical solutions are developed for any kind of fracture density indicators. Those analytical solutions are verified by numerical computing of the fracture density variability in three-dimensional stochastic Discrete Fracture Network (DFN) models following various orientation and size distributions, including the heavytailed power-law fracture size distribution. We show that this variability is dependent on the fracture size distribution and the measurement scale, but not on the orientation distribution. We also show that for networks following power-law size distribution, the scaling of the three-dimensional fracture density variability clearly depends on the power-law exponent.

Keywords:

Latest News
  • ITASCA Releases MassFlow version 9.0 ...
    Read More
  • Introducing IMAT (ITASCA Mining Analysis Toolbox): Transforming Mining Analysis Solutions ...
    Read More
  • 3DEC 9 Officially Released ...
    Read More

Upcoming Events
22 Apr
FLAC2D In-Person Introductory Course
Live in-person introductory training course. This 3-day course provides a general overview of FLAC2D and covers many basic concepts and... Read More
29 Apr
PFC In-Person Introductory Course
Live in-person introductory training course. This four-day course provides guidance in the use of the Itasca codes PFC2D and PFC3D to s... Read More
29 May
Getting Started with FLAC2D/FLAC3D
Objectives of the training: •Understand the FLAC2D/ FLAC3D numerical approach and the types ofproblems it can solve•Know how to manipul... Read More