Technical Papers

Influence of the particle shape on the impact force of lahar on an obstacle

Rime Chehade1*, Bastien Chevalier1, Fabian Dedecker2, and Pierre Breul1


1
Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France

2Itasca consultants SAS, 29 Avenue Joannes Masset, F-69009 Lyon, France

Chehade R, Chevalier B, Dedecker F, and Breul P (2021) - Influence of the particle shape on the impact force of lahar on an obstacle, Powders and Grains 2021, EPJ Web of Conferences 249 , 03010 (2021) - https://doi.org/10.1051/epjconf/202124903010

Abstract

Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of physical vulnerability. The existing tools to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts. A discrete numerical model is developed for evaluating debris flow (DF) impact pressures at the local scale of one structure. The large-sized solid particles are modelled explicitly using Distinct Element Method (DEM) and the fine-grained solid particles are integrated in a fluid phase which generates two effects on the movement of particles, i.e. buoyancy and drag. Fluid velocity field and the fluid free surface are obtained from Computational Fluid Dynamics (CFD) code then imported in the DEM simulation in a one way coupling scheme. In this paper, the influence of particle shape on the impact forces generated on the obstacle is investigated: spherical particles and polygonal rigid blocks (r-blocks) are considered. The shape of the particle influences the contact surface and therefore the impact pressure. With an angular shape and several facets like r-blocks, the impact pressure on an obstacle is more important for a flow with the same characteristics.

Latest News
  • Introducing FLAC2D Itasca is very pleased to announce FLAC2D as the next generation of our foundational software,...
    Read More
  • Itasca Partners with Rescale for FLAC3D Cloud Computing With the advent of web licenses, Itasca software can be run in the cloud via...
    Read More
  • Software Forum Now Open Itasca has launched a new software forum to provide a platform for users to ask...
    Read More

Upcoming Events
23 May
71st Highway Geology Symposium
Better highways through applied geology.... Read More
20 Jun
URTeC 2022
The Unconventional Resources Technology Conference (URTeC) is an event focused on the latest science and technology applied to explorat... Read More
23 Jun
Online Live Training : Python in Itasca Software
This course provides an overview of the Python programming language in Itasca software. The course covers major applications of Python ... Read More