Technical Papers

Numerical Evaluation of Effectiveness of Drainwells in Dewatering Overburden at Surface Coal Mines

Abstract:

Typical sedimentary sequences overlying coal seams consist of interbedded sandstones, siltstones, shales, and rider coal seams. In many surface coal mine settings, these sediments are saturated; and prior dewatering of them is necessary for effective and economic mining, including the stacking of saturated spoils. Such sedimentary sections usually have a very low vertical hydraulic conductivity that does not allow them to drain in a timely manner prior to their being stripped. One potential solution is installation of drainwells. Drainwells are small diameter wells that can collect water laterally from the various more permeable layers in the overburden and then gravity drain it to a lower layer – often the coal seam being mined – where it can be removed by pumping wells or sumps located in the bottom of the pit. A ground-water flow model utilizing the 3-dimensional finite element code MINEDW has been used to evaluate the effectiveness of using drainwells in a hydrogeologic setting that is typical of the Powder River Basin. A series of numerical simulations were completed using various combinations and spacings of drainwells and pumping wells to dewater the overburden and coal seams. The numerical simulations suggest that drainwells can be a very effective method of overburden dewatering.

Citation:

Howell, R.L., L.C. Atkinson, and H. Liu. 2000. Numerical evaluation of effectiveness of drainwells in dewatering overburden at surface coal mines. Society for Mining, Metallurgy, and Exploration Annual Meeting, Salt Lake City, Utah, 28 February-1 March.

Authors:

Houmao Liu

Link to Full Text:

Dewatering a Coal Mine.pdf

Latest News
  • Now Available from ITASCA: Innovative Machine Learning Tool for FLAC3D/FLAC2D V9.2 Experience the Future of Geotechnical Modeling with ITASCA Software V9.2: Introducing Machine Learning Models...
    Read More
  • Experience the Future of Geotechnical Modeling with ITASCA Software V9.2 Experience the Future of Geotechnical Modeling with ITASCA Software V9.2: Introducing Machine Learning Models and...
    Read More
  • Thank You to our Summer Interns ITASCA Minneapolis is lucky to have welcomed nine amazing and dedicated summer interns in our...
    Read More

Upcoming Events
29 Oct
Getting Started with 3DEC
Objectives of the training: Understand the 3DEC numerical approach and the types of problems it can solveKnow how to manipulate the 3DE... Read More
27 Oct
Geothermal Rising
The Geothermal Rising Conference is the geothermal industry’s flagship annual conference, reflecting the global nature of the geotherma... Read More
5 Nov
Python in Itasca Software
This course provides an overview of the Python programming language in Itasca software.The course covers major applications of Python t... Read More