Technical Papers

The role of rock mass heterogeneity and buckling mechanisms in excavation performance in foliated ground at Westwood Mine, Quebec

L. BouzeranI; M. PierceII; P. AndrieuxIII; E. WilliamsIV

IItasca Consulting Group Inc. (ICG), United States
IIPierce Engineering, United States
IIIA2GC, Canada
IVCVM Consultants, Mississauga, Canada

Bouzeran, L., Pierce, M., Andrieux, P., & Williams, E.. (2020). The role of rock mass heterogeneity and buckling mechanisms in excavation performance in foliated ground at Westwood Mine, Quebec. Journal of the Southern African Institute of Mining and Metallurgy, 120(1), 41-48. https://dx.doi.org/10.17159/2411-9717/860/2020

SYNOPSIS

Operations at Westwood mine in Quebec, Canada were temporarily halted in May 2015 after three large-magnitude seismic events occurred over two days. The mechanisms leading to these events, which caused severe damage to several accesses, were not well understood at first. This is partly due to the complex geology at the site, where massive, unaltered, strong, brittle, and seismically active rock can alternate with highly altered, weak, foliated, and buckling-prone rock at the metre scale. Other aspects of ground behaviour, such as the significant discrepancy in blast-hole performance between secondary and primary stopes and the propagation of damage from stopes to haulage drives in some locations, were also not well understood. In 2017, further geotechnical characterization of the rock mass was carried out and numerical back-analyses of several locations were completed using the continuum code FLAC3D. The objectives of the back analyses were to better understand the mechanisms controlling rock mass performance and to obtain a calibrated model for predictive stoping simulations. This paper presents the key aspects of the modelling, which include (1) an anisotropic rock mass strength model with properties derived from field and laboratory strength testing, and (2) a scheme to account implicitly for the deconfinement that accompanies buckling around excavations.

Keywords: rock mass performance, anisotropy, back-analysis, FLAC3D, deconfinement, buckling.

Buckling around the Coke Can in the 104 area (BI = 85, SI = 95)
Latest News
  • Workshop: The “Big Five”: Numerical Modeling of Cave Mining This MassMin2020 workshop will review caveability, ground subsidence, infrastructure stability, fragmentation, and gravity flow associated...
    Read More
  • 2020 H. Bolton Seed Lecture: Open Issues about Soil Liquefaction Dr. Bruce L. Kutter delivered the 2020 H. Bolton Seed Lecture at Geo-Congress 2020 in...
    Read More
  • Webinar: Using Rigid Blocks in PFC This webinar will provide a brief overview of PFC modeling using convex rigid blocks, including...
    Read More

Upcoming Events
4 Dec
Analyses of Embankment Dams and Slopes Using FLAC
Presented by Dr. Richard Armstrong in collaboration with Itasca Consulting Group. This hands-on, virtual training course is 16 hours to... Read More
8 Mar
FLAC3D 2021 Remote Introductory Training
Three days of general feature training addressing basic concepts and recommended procedures for geotechnical numerical analysis.... Read More
22 Mar
3DEC and UDEC 2021 Remote Introductory Training
An introduction to UDEC and 3DEC for application to geotechnical analysis.... Read More